incr(nil) → nil
incr(cons(X, L)) → cons(s(X), incr(L))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, adx(L)))
nats → adx(zeros)
zeros → cons(0, zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → L
incr: {1}
nil: empty set
cons: {1}
s: {1}
adx: {1}
nats: empty set
zeros: empty set
0: empty set
head: {1}
tail: {1}
↳ CSR
↳ CSRInnermostProof
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), incr(L))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, adx(L)))
nats → adx(zeros)
zeros → cons(0, zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → L
incr: {1}
nil: empty set
cons: {1}
s: {1}
adx: {1}
nats: empty set
zeros: empty set
0: empty set
head: {1}
tail: {1}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), incr(L))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, adx(L)))
nats → adx(zeros)
zeros → cons(0, zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → L
incr: {1}
nil: empty set
cons: {1}
s: {1}
adx: {1}
nats: empty set
zeros: empty set
0: empty set
head: {1}
tail: {1}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
ADX(cons(X, L)) → INCR(cons(X, adx(L)))
NATS → ADX(zeros)
NATS → ZEROS
TAIL(cons(X, L)) → L
incr(L)
zeros
incr on positions {1}
adx on positions {1}
TAIL(cons(X, L)) → U(L)
U(incr(x_0)) → U(x_0)
U(adx(x_0)) → U(x_0)
U(incr(L)) → INCR(L)
U(zeros) → ZEROS
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), incr(L))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, adx(L)))
nats → adx(zeros)
zeros → cons(0, zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → L
incr(nil)
incr(cons(x0, x1))
adx(nil)
adx(cons(x0, x1))
nats
zeros
head(cons(x0, x1))
tail(cons(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
U(incr(x_0)) → U(x_0)
U(adx(x_0)) → U(x_0)
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), incr(L))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, adx(L)))
nats → adx(zeros)
zeros → cons(0, zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → L
incr(nil)
incr(cons(x0, x1))
adx(nil)
adx(cons(x0, x1))
nats
zeros
head(cons(x0, x1))
tail(cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(incr(x_0)) → U(x_0)
U(adx(x_0)) → U(x_0)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), incr(L))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, adx(L)))
nats → adx(zeros)
zeros → cons(0, zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → L
incr(nil)
incr(cons(x0, x1))
adx(nil)
adx(cons(x0, x1))
nats
zeros
head(cons(x0, x1))
tail(cons(x0, x1))